Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(7): 585-598, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37194220

RESUMO

Intensive farming systems benefit from the additional ecosystem services provided by tree integration, which generate different growing conditions for the main crop. We studied yerba mate (Ilex paraguariensis ) responses to growing conditions in monoculture (the conventional cropping system of yerba mate) and in three agroforestry systems: (1) yerba mate+Balfourodendron riedelianum ; (2) yerba mate+Peltophorum dubium ; and (3) yerba mate+Toona ciliata . Mainly, we focused on water relations and the hydraulic architecture of yerba mate. Agroforestry cropping systems provided a shade cover of around 34-45% and yielded as high as the conventional system. The shade cover influenced the allocation pattern to enhance leaf light capture, incrementing the leaf area to the sapwood area at the branch level. We also found a higher specific hydraulic conductivity in stems of yerba mate plants in consortium with T. ciliata than in the conventional cropping system, as well as higher resistance to water deficits due to lower vulnerability to embolism in the stems. During a severe drought, yerba mate plants had a similar stem and leaf water potential in both agricultural systems. Still, plants in monoculture had lower hydraulic safety margins and higher signs of leaf damage and mortality. This indicates that integrating trees into the yerba mate cultivation increases water stress resistance which would be beneficial to avoid restrictions on crop productivity under severe droughts induced by climate change.


Assuntos
Ilex paraguariensis , Extratos Vegetais , Extratos Vegetais/farmacologia , Ecossistema
2.
Tree Physiol ; 43(2): 248-261, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209429

RESUMO

Stored water in inner tissues influences the plant water economy, which might be particularly relevant for trees facing increasing dry conditions due to climate change. We studied the water storage in the inner bark and the sapwood of Araucaria araucana (Molina) K. Koch. This species has an extremely thick inner bark and thus it can be used as a model system to assess the impact of internal water storage on plant water balance. Specifically, we analyzed the water circulation pathways in and out of the elastic water storages by using simultaneously frequency domain moisture sensors and dendrometers inserted in the inner bark and in the sapwood, and sap flow determinations during the dry season. The daily patterns of water content and expansion and contraction of the stem tissues were similar to the sap flow pattern. The whole-stem water content and diameter increased in the morning and decreased in the afternoon, contrary to the typical pattern observed in most tree species. An osmotic gradient favoring the water influx from sapwood to inner bark was observed in the morning. There were no lags in the onset of sap flow between different stem heights at the time that recharge of reservoirs occurred. Sap flow at 6 m height was higher than basal sap flow in the afternoon, when the sapwood water content started to decline followed by the water content of the inner bark. Inner bark and sapwood contributed 5-11% to total daily transpiration, allowing the maintenance of high water potentials in the dry season. Our results suggest that the stored water in the stems, the atypical dynamic of recharge and discharge of water from reservoirs and the high tissue capacitance may make an important contribution to the survival of A. araucana during drought periods by maintaining the water balance.


Assuntos
Araucaria araucana , Água , Água/metabolismo , Secas , Casca de Planta/metabolismo , Transpiração Vegetal , Ritmo Circadiano , Árvores/metabolismo , Caules de Planta/metabolismo
3.
Front Microbiol ; 11: 1491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719665

RESUMO

Forest replacement by exotic plantations drive important changes at the level of the overstory, understory and forest floor. In the Atlantic Forest of northern Argentina, large areas have been replaced by loblolly pine (Pinus taeda L.) monocultures. Plant and litter transformation, together with harvesting operations, change microclimatic conditions and edaphic properties. Management practices such as thinning promote the development of native understory vegetation and could counterbalance negative effects of forest replacement on soil. Here, the effects of pine plantations and thinning on physical, chemical and microbiological soil properties were assessed. Bacterial, archaeal, and fungal community structure were analyzed using a metabarcoding approach targeting ribosomal markers. Forest replacement and, to a lesser extent, thinning practices in the pine plantations induced significant changes in soil physico-chemical properties and associated shifts in bacterial and fungal communities. Most measured physical and chemical properties were altered due to forest replacement, but a few of these properties reached values similar to natural forests under the thinning operation. Fungal alpha diversity decreased in pine plantations, whereas bacterial alpha diversity tended to increase but with little statistical support. Shifts in community composition were observed for both fungal and bacterial domains, and were mostly related to changes in plant understory composition, soil carbon, organic matter, water content, pH and bulk density. Among several other changes, highly abundant phyla such as Proteobacteria (driven by many genera) and Mortierellomycota (mainly driven by Mortierella) decreased in relative abundance in the plantations, whereas Acidobacteria (mainly driven by Acidothermus and Candidatus Koribacter) and Basidiomycota (mainly driven by the ectomycorrhiza Russula) showed the opposite response. Taken together, these results provide insights into the effects of forest replacement on belowground properties and elucidate the potentially beneficial effect of thinning practices in intensive plantation systems through promoting the understory development. Although thinning did not entirely counterbalance the effects of forest replacement on physical, chemical and biological soil properties, the strategy helped mitigating the effects and might promote resilience of these properties by the end of the rotation cycle, if subsequent management practices compatible with the development of a native understory vegetation are applied.

4.
Funct Plant Biol ; 47(9): 779-791, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513382

RESUMO

Frost and drought are key stress factors limiting the growth and distribution of tree species. Resistance to stress involves energy costs that may result in trade-offs between different functional traits. Structures or mechanisms that can help to withstand stress imply differences in the carbon economy of the species. Although adaptive responses to frost and drought resistance are usually of a similar nature, they are rarely assessed simultaneously. We investigated these resistance mechanisms in 10 canopy tree species coexisting in the semi-deciduous subtropical forests of northern Argentina. We measured leaf lifespan, anatomical, photosynthetic and water relations traits and performed a thermal analysis in leaves to determined ice nucleation and tissue damage temperatures. Our results showed that evergreen and deciduous species have different adaptive responses to cope with freezing temperatures and water deficits. Evergreen species exhibited cold tolerance, while deciduous species were more resistant to hydraulic dysfunction and showed greater water transport efficiency. Further research is needed to elucidate resistance strategies to stress factors at the whole tree- and stand level, and possible links with hydraulic safety and efficiency among different phenological groups. This will allow us to predict the responses of subtropical forest species to changes in environmental conditions under climate change scenarios.


Assuntos
Secas , Árvores , Argentina , Florestas , Clima Tropical
5.
Tree Physiol ; 38(12): 1841-1854, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986095

RESUMO

Tree physiological processes are affected not only by environmental conditions, but also by phenological leaf stages. During foliar expansion, rapid changes occur, such as the activation of metabolic processes that encompass a hydraulic link between xylem and phloem pathways at a whole-tree level. Daily and seasonal changes in stem diameter may reveal different temporal dynamics of water use and recharge in tree reservoirs. Foliar phenological patterns were studied in relation to stem dimensional changes in 10 canopy tree species with different phenological patterns (three deciduous, three brevideciduous and four evergreen species). Additionally, we assessed (i) daily sap flow fluctuations in branch and main stem, (ii) diurnal changes in sapwood volumetric water content and (iii) stem radius variations during leafless, expanding and mature leaves periods in three of the 10 tree species (two deciduous and one brevideciduous). During the leaf expansion phase, the diameter of trees decreased in all 10 species, with a larger impact on deciduous and brevideciduous species. For the subset of deciduous and brevideciduous species, the movement of long-distance water transport occurred first near the branches and then in the main stem during the leafless stage. Changes in stored water use and a decrease in the volumetric water content and the radius of the main stem during this period suggest that there is a contribution of water from internal stem reservoirs toward the construction of new leaves.


Assuntos
Florestas , Folhas de Planta/metabolismo , Árvores/metabolismo , Argentina , Folhas de Planta/anatomia & histologia , Caules de Planta/metabolismo , Árvores/anatomia & histologia , Água/metabolismo
6.
Tree Physiol ; 35(4): 354-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25428825

RESUMO

Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species are less shade tolerant than evergreen species.


Assuntos
Caules de Planta/metabolismo , Transpiração Vegetal , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Madeira/crescimento & desenvolvimento , Xilema , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/metabolismo
7.
Tree Physiol ; 34(6): 630-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24898220

RESUMO

Physiological characteristics of saplings can be considered one of the most basic constraints on species distribution. The shade-tolerant arborescent palm Euterpe edulis Mart. is endemic to the Atlantic Forest of Argentina, Brazil and Paraguay. At a local scale, saplings of this species growing in native forests are absent in gaps. We tested the hypothesis whether sensitivity to photoinhibition or hydraulic architecture constrains the distribution of E. edulis saplings in sun-exposed forest environments. Using shade houses and field studies, we evaluated growth, survival, hydraulic traits and the susceptibility of Photosystem II to photoinhibition in E. edulis saplings under different growth irradiances. Survival rates in exposed sites in the field were very low (a median of 7%). All saplings exhibited photoinhibition when exposed to high radiation levels, but acclimation to a high radiation environment increased the rate of recovery. Petiole hydraulic conductivity was similar across treatments regardless of whether it was expressed per petiole cross-sectional area or per leaf area. At the plant level, investment in conductive tissues relative to leaf area (Huber values) increased with increasing irradiance. Under high irradiance conditions, plants experienced leaf water potentials close to the turgor-loss point, and leaf hydraulic conductance decreased by 79% relative to its maximum value. Euterpe edulis saplings were able to adjust their photosynthetic traits to different irradiance conditions, whereas hydraulic characteristics at the leaf level did not change across irradiance treatments. Our results indicate that uncoupling between water demand and supply to leaves apparently associated with high resistances to water flow at leaf insertion points, in addition to small stems with low water storage capacity, weak stomatal control and high vulnerability of leaves to hydraulic dysfunction, are the main ecophysiological constraints that prevent the growth and survival of E. edulis saplings in gaps in the native forest where native lianas and bamboos show aggressive growth.


Assuntos
Euterpe/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Aclimatação , Euterpe/crescimento & desenvolvimento , Euterpe/efeitos da radiação , Florestas , Luz , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Árvores
8.
Tree Physiol ; 33(12): 1308-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24284866

RESUMO

Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.


Assuntos
Magnoliopsida/fisiologia , Transpiração Vegetal/fisiologia , Argentina , Biomassa , Carbono/farmacologia , Fertilizantes , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/farmacologia , Fenótipo , Fósforo/farmacologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Árvores , Água/fisiologia
9.
Tree Physiol ; 33(3): 285-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23436182

RESUMO

A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Água/fisiologia , Xilema/crescimento & desenvolvimento , Aclimatação , Animais , Argentina , Secas , Fertilizantes , Herbivoria , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Madeira , Xilema/anatomia & histologia , Xilema/fisiologia , Xilema/efeitos da radiação
10.
Tree Physiol ; 32(7): 880-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684354

RESUMO

Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.


Assuntos
Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/metabolismo , Altitude , Transporte Biológico , Umidade , Chuva , Solo , América do Sul , Especificidade da Espécie , Temperatura , Madeira/fisiologia
11.
Tree Physiol ; 28(11): 1609-17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18765366

RESUMO

This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).


Assuntos
Árvores/fisiologia , Madeira/fisiologia , Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Clima Tropical , Água/metabolismo
12.
Oecologia ; 156(1): 31-41, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18253753

RESUMO

Stomatal regulation of transpiration constrains leaf water potential (Psi(L)) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the stems to which they are attached. We evaluated a suite of leaf and stem functional traits governing water relations in individuals of 11 lowland tropical forest tree species to determine the manner in which the traits were coordinated with stem xylem vulnerability to embolism. Stomatal regulation of Psi(L) was associated with minimum values of water potential in branches (Psi(br)) whose functional significance was similar across species. Minimum values of Psi(br) coincided with the bulk sapwood tissue osmotic potential at zero turgor derived from pressure-volume curves and with the transition from a linear to exponential increase in xylem embolism with increasing sapwood water deficits. Branch xylem pressure corresponding to 50% loss of hydraulic conductivity (P (50)) declined linearly with daily minimum Psi(br) in a manner that caused the difference between Psi(br) and P (50) to increase from 0.4 MPa in the species with the least negative Psi(br) to 1.2 MPa in the species with the most negative Psi(br). Both branch P (50) and minimum Psi(br) increased linearly with sapwood capacitance (C) such that the difference between Psi(br) and P (50), an estimate of the safety margin for avoiding runaway embolism, decreased with increasing sapwood C. The results implied a trade-off between maximizing water transport and minimizing the risk of xylem embolism, suggesting a prominent role for the buffering effect of C in preserving the integrity of xylem water transport. At the whole-tree level, discharge and recharge of internal C appeared to generate variations in apparent leaf-specific conductance to which stomata respond dynamically.


Assuntos
Magnoliopsida/fisiologia , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Árvores , Água/fisiologia , Xilema/fisiologia , Panamá , Transpiração Vegetal , Clima Tropical
13.
Tree Physiol ; 28(1): 85-94, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938117

RESUMO

Plasticity in hydraulic architecture of five dominant Atlantic forest species differing in light requirements and growth rates was evaluated in saplings grown at different irradiances to determine if hydraulic architecture changes in coordination with photosynthetic capacity. Saplings were grown in shade-houses at 10, 30, 45 and 65% of full solar irradiance for 4 months. In four of the five species, maximum relative growth rates were observed at intermediate irradiances (30 and 40% of full sun). Slow-growing species had lower maximum electron transport rates (ETR(max)) than fast-growing species. A positive correlation between ETR(max) and maximum leaf hydraulic conductivity (K(L)) was found across species, suggesting that species-specific stem hydraulic capacity and photosynthetic capacity were linked. Species with relatively high growth rates, such as Cedrela fissilis Vell., Patagonula americana L. and Cordia trichotoma (Vell.) Arrab. Ex Stend, exhibited increased K(L) and specific hydraulic conductivity (K(S)) with increased growth irradiance. In contrast, K(S) and K(L) did not vary with irradiance in the slower-growing and more shade-tolerant species Balfourodendron riedelianum (Engl.) Engl. and Lonchocarpus leucanthus Burkart, despite a relatively large irradiance-induced variation in ETR(max). A correlation between K(S) and ETR(max) was observed in fast-growing species in different light regimes, suggesting that they are capable of plastic changes in hydraulic architecture and increased water-transport efficiency in response to changes in light availability resulting from the creation of canopy gaps, which makes them more competitive in gaps and open habitats.


Assuntos
Luz , Fotossíntese , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/metabolismo , Argentina , Clima , Transporte de Elétrons , Cinética , Árvores/classificação , Árvores/crescimento & desenvolvimento , Suporte de Carga
14.
Plant Cell Environ ; 29(12): 2153-67, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17081249

RESUMO

Leaf and whole plant-level functional traits were studied in five dominant woody savannah species from Central Brazil (Cerrado) to determine whether reduction of nutrient limitations in oligotrophic Cerrado soils affects carbon allocation, water relations and hydraulic architecture. Four treatments were used: control, N additions, P additions and N plus P additions. Fertilizers were applied twice yearly, from October 1998 to March 2004. Sixty-three months after the first nutrient addition, the total leaf area increment was significantly greater across all species in the N- and the N + P-fertilized plots than in the control and in the P-fertilized plots. Nitrogen fertilization significantly altered several components of hydraulic architecture: specific conductivity of terminal stems increased with N additions, whereas leaf-specific conductivity and wood density decreased in most cases. Average daily sap flow per individual was consistently higher with N and N + P additions compared to the control, but its relative increase was not as great as that of leaf area. Long-term additions of N and N + P caused midday PsiL to decline significantly by a mean of 0.6 MPa across all species because N-induced relative reductions in soil-to-leaf hydraulic conductance were greater than those of stomatal conductance and transpiration on a leaf area basis. Phosphorus-fertilized trees did not exhibit significant changes in midday PsiL. Analysis of xylem vulnerability curves indicated that N-fertilized trees were significantly less vulnerable to embolism than trees in control and P-fertilized plots. Thus, N-induced decreases in midday PsiL appeared to be almost entirely compensated by increases in resistance to embolism. Leaf tissue water relations characteristics also changed as a result of N-induced declines in minimum PsiL: osmotic potential at full turgor decreased and symplastic solute content on a dry matter basis increased linearly with declining midday PsiL across species and treatments. Despite being adapted to chronic nutrient limitations, Cerrado woody species apparently have the capacity to exploit increases in nutrient availability by allocating resources to maximize carbon gain and enhance growth. The cost of increased allocation to leaf area relative to water transport capacity involved increased total water loss per plant and a decrease in minimum leaf water potentials. However, the risk of increased embolism and turgor loss was relatively low as xylem vulnerability to embolism and leaf osmotic characteristics changed in parallel with changes in plant water status induced by N fertilization.


Assuntos
Clima , Nitrogênio/metabolismo , Fósforo/metabolismo , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Osmose , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia
15.
Oecologia ; 134(1): 37-45, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12647177

RESUMO

Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single individual of Anacardium excelsum, Ficus insipida, Schefflera morototoni, and Cordia alliodora during two consecutive dry seasons. Vessel lumen diameter and vessel density did not exhibit a consistent trend axially from the base of the stem to the base of the crown. However, lumen diameter decreased sharply from the base of the crown to the terminal branches. The ratio of vessel lumen area to sapwood cross-sectional area was consistently higher at the base of the crown than at the base of the trunk in A. excelsum, F. insipida and C. alliodora, but no axial trend was apparent in S. morototoni. Radial profiles of the preceding wood anatomical characteristics varied according to species and the height at which the wood samples were obtained. Radial profiles of sap flux density measured with thermal dissipation sensors of variable length near the base of the crown were highly correlated with radial profiles of specific hydraulic conductivity (k(s)) calculated from xylem anatomical characteristics. The relationship between sap flux density and k(s) was species-independent. Deuterium oxide (D(2)O) injected into the base of the trunk of the four study trees was detected in the water transpired from the upper crown after only 1 day in the 26-m-tall C. alliodora tree, 2 days in the 28-m-tall F. insipida tree, 3 days in the 38-m-tall A. excelsum tree, and 5 days in the 22-m-tall S. morototoni tree. Radial transport of injected D(2)O was detected in A. excelsum, F. insipida and S. morototoni, but not C. alliodora. The rate of axial D(2)O transport, a surrogate for maximum sap velocity, was positively correlated with the predicted sapwood k(s) and with tree height normalized by the relative diurnal water storage capacity. Residence times for the disappearance of the D(2)O tracer in transpired water ranged from 2 days in C. alliodora to 22 days in A. excelsum and were positively correlated with a normalized index of diurnal water storage capacity. Capacitive exchange of water between stem storage compartments and the transpiration stream thus had a profound influence on apparent rates of axial water transport, the magnitude of radial water movement, and the retention time in the tree of water taken up by the roots. The inverse relationship between internal water exchange capacity and k(s) was consistent with a trade-off contributing to stability of leaf water status through highly efficient water transport at one extreme and release of stored water at the other extreme.


Assuntos
Árvores/metabolismo , Água/metabolismo , Transporte Biológico , Meio Ambiente , Temperatura Alta , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...